SUPPLEMENTAL MATERIAL

Cholic Acid-Peptide Conjugates (CAPs) as Potent Antimicrobials against Interkingdom Polymicrobial Biofilms

Siddhi Gupta,^{1,#,*} Jyoti Thakur,^{2,#} Sanjay Pal,^{1,3} Ragini Gupta,¹ Deepakkumar Mishra,¹ Sandeep Kumar,^{1,4} Kavita Yadav,^{1,4} Amandeep Saini,⁵ Prabhu S. Yavvari,² Madhukar Vedantham,¹ Archana Singh,⁶ Aasheesh Srivastava,² Rajendra Prasad,⁵ and Avinash Bajaj.^{1, *}

1. Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.

2. Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.

3. Kalinga Institute of Industrial Technology, KIIT Road, Patia, Bhubaneswar-751024, Odisha, India.

4. Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal-576104, Karnataka, India.

5. Amity Institute of Integrative Sciences and Health, Amity University, Amity Education Valley Gurugram, Panchgaon, Manesar, Gurugram-122413, Haryana, India.

6. CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi-110025, India.

#: Authors contributed equally

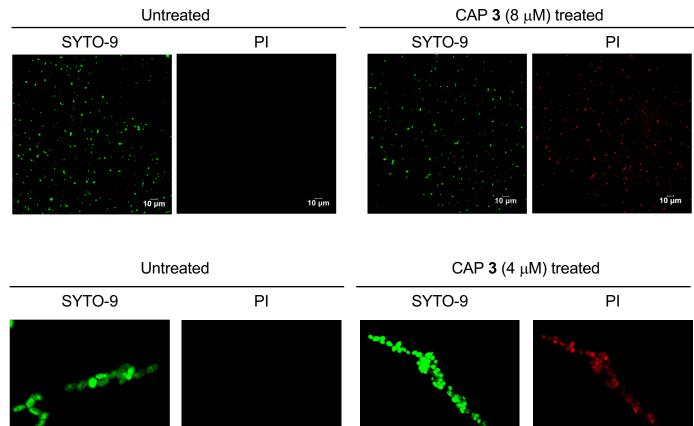
Corresponding Authors:

Siddhi Gupta, Email: <u>siddhi.gupta@rcb.res.in</u>

Avinash Bajaj, Email: <u>bajaj@rcb.res.in</u>

Table S1. Table showing antibacterial and antifungal activities of CAPs (1-20) against different bacterial and
fungal strains along with cytotoxicity activities of the amphiphiles against human lung epithelial cells. All
values mentioned are in μ g/mL.

		MIC ₉₉ (µg/mL)ª (Gram-positive bacteria)			MIC ₈₀ (μg/mL) ^ь (<i>Candida</i> strains)			IC ₅₀ (µg/mL) ^c
CAPs		S. aureus	B. subtilis	S. pneumoniae	C. albicans	C. tropicalis	C. kefyr	A549
CAP 1	CA-G ₃	121.6	60.8	30.4	3.8	7.6	3.8	>95.03
CAP 2	CA-A ₃	127.0	63.5	15.9	4.0	4.0	2.0	75.81
CAP 3	CA-V ₃	8.6	8.6	8.6	4.3	4.3	2.1	60.74
CAP 4	CA-I ₃	8.9	8.9	8.9	4.5	8.9	2.2	8.59
CAP 5	CA-L ₃	35.8	35.8	8.9	8.9	4.5	4.5	11.05
CAP 6	CA-P ₃	136.6	136.6	17.1	8.5	8.5	2.1	>106.75
CAP 7	CA-M ₃	18.8	18.8	75.1	4.7	9.4	4.7	68.79
CAP 8	CA-F ₃	>312.5	>312.5	78.1	9.8	9.8	4.9	4.87
CAP 9	CA-Y ₃	>324.8	>324.8	>324.8	20.3	>324.8	5.1	>116.87
CAP 10	CA-W ₃	291.3	291.3	291.3	291.3	291.3	145.6	>113.78
CAP 11	CA-S ₃	133.2	133.2	66.6	8.3	8.3	4.2	>104.04
CAP 12	CA-T ₃	277.1	277.1	69.3	17.3	8.7	8.7	>108.25
CAP 13	CA-H₃	80.9	80.9	40.4	10.1	40.4	5.1	>126.45
CAP 14	CA-D ₃	>287.9	>287.9	>287.9	>287.9	>287.9	>287.9	>112.44
CAP 15	CA-E ₃	>298.6	>298.6	>298.6	>298.6	>298.6	>298.6	>116.65
CAP 16	CA-R ₃	40.8	>326.3	10.2	20.4	>326.3	10.2	>249.56
CAP 17	CA-C ₃	>278.7	>278.7	139.3	>278.7	>278.7	4.4	>217.73
CAP 18	CA-K ₃	>325.9	163.0	40.7	5.1	20.4	5.1	>127.38
CAP 19	CA-N ₃	>287.1	>287.1	>287.1	17.9	17.9	9.0	>112.15
CAP 20	CA-Q ₃	148.7	148.7	>297.3	37.2	37.2	37.2	>116.36


a: Minimum inhibitory concentration at which 99% bacterial killing was observed. b: Minimum inhibitory concentration at which 80% fungal killing was observed. c: Cytotoxic activity of CAPs against human lung epithelial (A549) cells as IC_{50} the concentrations at which 50% cell death was observed. d: not determined.

А

В

10 µm

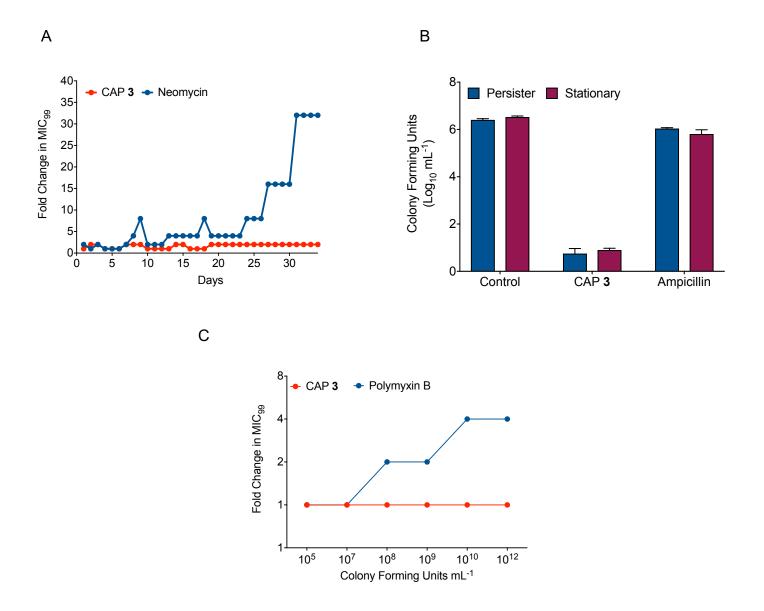
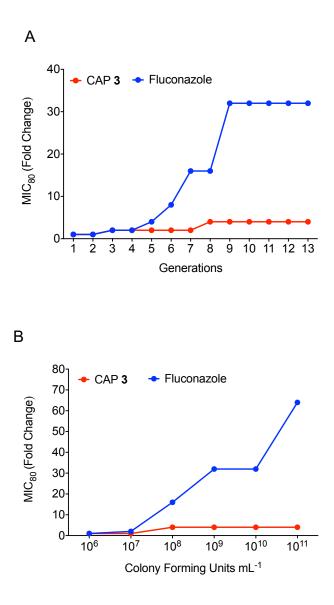


Figure S1. Fluorescence micrographs of *S. aureus* (A) and *C. albicans* (B) stained with SYTO9 and PI for live and dead cells after 6 h of CAP **3** treatment.


10 µm

10 µm

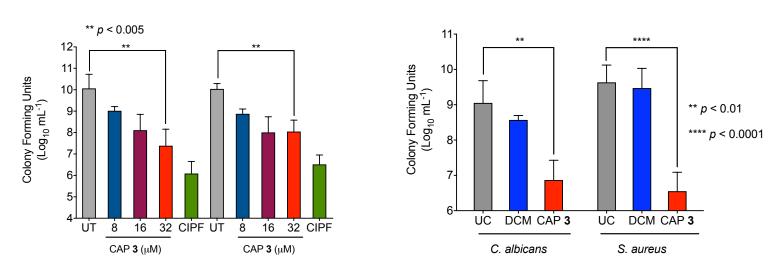

10 µm

Figure S2. A) Change in MIC₉₉ of CAP **3** against bacteria over multiple generations show the inability of the bacteria to generate many fold drug resistance against CAP **3** on sequential treatment as compared to neomycin for which bacteria develop resistance. B) Antibacterial activities of CAP **3** on stationary and persistent bacteria confirm the clearance of bacteria as compared to ampicillin. C) Mutant prevention assay witness the ability of CAP **3** to clear any persisters at higher CFU as compared to increase in MIC₉₉ of polymyxin B at higher CFU.

Figure S3. A) Change in MIC₈₀ of CAP **3** against *C. albicans* confirm the inability of the *C. albicans* to generate drug resistance against CAP **3** whereas *C. albicans* develop many fold drug resistance to fluconazole. B) Mutant prevention assay witness the ability of CAP **3** to clear any *C. albicans* at higher CFU as compared to increase in MIC₈₀ of fluconazole at higher CFU.

Figure S4. A) Quantification of *S. aureus* and *C. albicans* by colony forming units (CFU/mL) after treatment of pre-formed polymicrobial biofilms on catheters with different doses of CAP **3** (8, 16 and 32 μ M) for 24 h confirm the ability of CAP **3** to degrade the existing pre-formed biofilms. Combination of ciprofloxacin (32 μ M) and fluconazole (32 μ M) (CIPF) was used as control. UT means untreated. B) Quantification of *S. aureus* and *C. albicans* on uncoated (UC), DCM- and CAP **3**-coated catheters (15 dips in 20 mg/mL of dichloromethane (DCM) solution of CAP **3**) by colony forming units witness the ability of the CAP **3** to prevent the formation of polymicrobial biofilm.

A